Wansbeck Primary School

 Gold Star Challenge

Gold Star Challenges

These are challenges that are aimed at children targeted greater depth/ children who have shown a good understanding of their learning and we want to deepen it further.

These are not just problem solving and reasoning problems, these are problems that will allow children to showcase and further stretch their understanding of the main task.

These should be carefully crafted and meaningful tasks to challenge our children. They can be open-ended, allow them to analyse work, correct errors, further explain problems and don't always have a clear or obvious starting point on how to approach the task.

They are separate to the main task (which covers reasoning and problem solving tasks for all children to be challenged by) and are coloured yellow.

Gold Star Challenge

What we are looking for in a Gold Star Challenge

- Ask students to create real-world stories for "naked number" problems.
- Include a prompt that asks students to represent the information another way (with a picture, in a table, a graph, an equation, with a context).
- Use a task "out of sequence" before students have memorized a rule or have practiced a procedure that can be routinely applied.
- Eliminate components of the task that confine student thinking or provide too much scaffolding.
- Create opportunities for repeated reasoning or pattern finding
- Create a prompt that asks students to write about the meaning of the mathematics concept.
- Add a prompt that asks students to make note of a pattern or to make a mathematical conjecture and to test their conjecture.
- Include a prompt that requires students to make a generalisation.
- Include a prompt that requires students to compare solution paths or mathematical relationships and write about the relationship between strategies or concepts.
- Select numbers carefully so students are more inclined to note relationships between quantities (e.g., two tables can be used to think about the solutions to the four, six, or eight tables).

KS1

Spot the mistake / Which is correct?	True or false	What comes next?	Do, then explain $37,13,73,33,3$
950, $975,1000,1250$	31 is a multiple of 2?	$46-10=36$	
question, calculation connections			
What is wrong with this sequence of numbers?	$36-10=26$		
Create numbers where the ones digit is			
If you wrote these numbers in order,			
starting with the smallest, which would			
be third? Explain how you ordered the			
numbers.			
ne largest / smallest number?			

Possible answer A number rounded to the nearest ten is 40 . What is the smallest possible number it could be?	What do you notice? Round 3997 to the nearest 1000 . Round it to the nearest 100. What do you notice?	Continue the pattern $\begin{aligned} & \frac{1}{2}+\frac{1}{2}=1 \\ & 1 \frac{1}{2}+\frac{1}{2}=2 \\ & 2 \frac{1}{2}+\frac{1}{2}=3 \end{aligned}$ Continue the pattern	Missing numbers, symbols, information Put the correct symbol in < or > in each box $32 \square 31$	Working backwards / use the inverse / undoing / unpicking A film lasting 60 minutes finished at 5 pm . At what time did it start?
Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 210-70 \\ & 50 \div 4 \\ & 12 \times 4 \end{aligned}$	What else do you know / use a fact Half of a sum of money $=£ 24$. Make up some other statements	Fact families Put 19, 15 and 4 in the boxes to make the number sentences correct $\begin{aligned} & \square=\square-\square \\ & \square=\square+\square \end{aligned}$	Convince me / prove it / generalising / explaining thinking If you add an even number to another even number you get an answer which is even. Convince me.	Another and another Write a number which lies between 30 and 50. And another...and another...
Always, sometimes, never Is it always, sometimes or never true that when you fold a square in half you get a rectangle?	Making links I have 30 p in my pocket in $5 p$ coins. How many coins do I have?	Ordering Put these answers in the correct order starting with the smallest $2 \times 3,13+7,12 \div 6$	What's the same? What's different? What is the same and different about these three 2 D shapes?	Odd one out Which is the odd one out in this trio? $1 / 22 / 41 / 4$
Testing conditions A square has sides of a whole number of centimetres. Which of the following measurements could represent its perimeter? $8 \mathrm{~cm} 18 \mathrm{~cm} \mathrm{24cm} \mathrm{25cm}$	Make an estimate / size of an answer Can you work out how each estimate might have been made? $\begin{aligned} & 93-34=? \\ & 60 \quad 61 \quad 56 \end{aligned}$	Complete the pattern $\begin{array}{ll} 1 \times 10=10 & 10 \times 10=100 \\ 2 \times 10=20 & 20 \times 10=200 \\ 3 \times 10=30 & 30 \times 10=300 \end{array}$	Can you find? Can you find the smallest number that can be added to or subtracted from 23 to make it exactly divisible by 5 ?	The answer is... The answer is 72 , what is the question?

Other possibilities	Visualising	Application	Write more statements
One face of a 3D shape looks like this:	In your head picture a rectangle that is twice as long as it is wide. What could its measurements be?	Draw two lines whose lengths differ by 4 cm	One battery weights the same as 60 paperclips. One pencil sharpener weights the same as 20 paperclips. Write down some things you know.
What could the shape be? Are there any other possibilities?			

Year 1

Number and place value

| Spot the mistake: | True or False? | What comes next? | Do, then explain |
| :--- | :--- | :--- | :--- | :--- |
| $5,6,8,9$ | | | |
| What is wrong with this sequence of | I start at 2 and count in twos. I will say | $10+1=11$ | |
| numbers? | 9 | $11+1=12$ | |
| | | Look at the objects. (in a collection). Are
 there more of one type than
 another?
 How can you find out? | |

Addition, subtraction, multiplication and division

Continue the pattern

$10+8=18$
$11+7=18$
Can you make up a similar pattern for the number 17?
How would this pattern look if it
included subtraction?

Missing numbers

$$
\begin{aligned}
& 9+\square=10 \\
& 10-\square=
\end{aligned}
$$

What number goes in the missing box?

Making an estimate

Pick (from a selection of number sentences) the ones where the answer is 8 or 9 .

Is it true that?

Is it true that $3+4=4+3$?

Working backwards

Through practical games on number tracks and lines ask questions such as "where have you landed?" and "what numbers would you need to throw to land on other given numbers?"

What do you notice?

$11-1=10$
$11-10=1$
Can you make up some other number sentences like this involving 3 different numbers

Making links

If one teddy has two apples, how many apples will three teddies have?

Here are 10 LEGO people. If 2 people fit into the train carriage, how many carriages do we need?

Fact families

Which four number sentences link these numbers? 12, 15, 3

What else do you know?

If you know this:
$12-9=3$
what other facts do you know?

Missing symbols

Write the missing symbols (+ - =) in these number sentences:
\square

(Practical)
If we put two pencils in each pencil pot how many pencils will we need?

Convince me

In my head I have two odd numbers with a difference of 2 . What could they be?
Convince me

Missing numbers

Fill in the missing numbers (using a range of practical resources to support)

Spot the mistake

Use a puppet to count but make some deliberate mistakes.
e.g. 2456

10986
See if the pupils can spot the deliberate mistake and correct the puppet

Fractions

```
Choose a number of counters. Place them onto 2 plates so that there is the same
number on each half.
When can you do this and when can't you?
What do you notice?
```


Geometry

What's the same, what's different? Find a rectangle and a triangle in this set of shapes. Tell me one thing that's the same about them. Tell me one thing that is different about them.	True or false? All 2-D shapes have at least 4 sides	Working backwards The shape below was turned three quarter of a full turn and ended up looking like this.	Other possibilities Can you find shapes that can go with the set with this label? Put some shapes in a bag. Find me a shape that has more than three edges.
"Have straight sides"			

Measurement

Top tips
 How do you know that this (object) is heavier / longer / taller than this one?

 Explain how you know.
Explain thinking

Ask pupils to reason and make statements about to the order of daily routines in school e.g. daily timetable e.g. we go to PE after we go to lunch. Is this true or false?
What do we do before break time? etc.

Application

(Can be practical)
Which two pieces of string are the same length as this book?

Possibilities

Ella has two silver coins.
How much money might she have?

Number and place value

Spot the mistake: True or False? $45,40,35,25$ I start at 3 and count in threes. I will What is wrong with this sequence of numbers? say 13?	What comes next? Do, then explain $41+5=46$ $46+5=51$ $51+5=56$ Show the value of the digit 2 in these numbers? \cdots $32 \quad 27 \quad 92$ Explain how you know.
Make up an example Create numbers where the ones digit is one less than the tens digit. What is the largest/smallest number?	Do, then explain 371373333 If you wrote these numbers in order starting with the smallest, which number would be third? Explain how you ordered the numbers.

Addition, subtraction, multiplication and division

Continue the pattern $\begin{aligned} & 90=100-10 \\ & 80=100-20 \end{aligned}$ Can you make up a similar pattern starting with the numbers 74,26 and 100 ?	$\begin{aligned} & \text { Missing } \text { numbers } \\ & 91+\square=100 \\ & 100-\square=89 \end{aligned}$ What number goes in the missing box?	True or false? Are these number sentences true or false? $73+40=113$ $98-18=70$ $46+77=123$ $92-67=35$ Give your reasons.	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 23+10= \\ & 93+10= \\ & 54+9= \\ & 54+1= \end{aligned}$ Explain why you think the hard questions are hard?
Other possibilities $=14$ What single digit numbers could go in the boxes? How many different ways can you do this?	Fact families Which four number sentences link these numbers? $100,67,33$	What else do you know? If you know this: $87=100-13$ what other facts do you know?	Missing symbols Write the missing symbols (+ - =) in these number sentences:

Fractions

Spot the mistake	What comes next?	What do you notice?	True or false?
$7,7 \frac{1}{2}, 8,9,10$	$5 \frac{1}{2}, 6 \frac{1}{2}, 7 \frac{1}{2}, \ldots, \ldots \ldots$		
$8 \frac{1}{2}, 8,7,6 \frac{1}{2}$,	$9 \frac{1}{2}, 9,8 \frac{1}{2}, \ldots \ldots, \ldots$.	$\frac{1}{4}$ of $4=1$	
\ldots and correct it		$\frac{1}{4}$ of $8=2$	Half of $20 \mathrm{~cm}=5 \mathrm{~cm}$ $\frac{3}{4}$ of $12 \mathrm{~cm}=9 \mathrm{~cm}$

		$\frac{1}{4} \text { of } 12=3$ Continue the pattern What do you notice?	
Odd one out. Which is the odd one out in this trio: $\begin{array}{lll} \frac{1}{2} & \frac{2}{4} & \frac{1}{4} \end{array}$ Why?	What do you notice? Find $\frac{1}{2}$ of 8 . Find $\frac{2}{4}$ of 8 What do you notice?	Ordering Put these fractions in the correct order, starting with the smallest. $\frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{3}$	
Geometry			
What comes next? Explain why	Visualising In your head picture a rectangle that is twice as long as it is wide. What could its measurements be?	Always, sometimes, never Is it always, sometimes or never true that when you fold a square in half you get a rectangle.	Other possibilities Can you find shapes that can go with the set with this label? "Have straight sides and all sides are the same length"
Working backwards If I face forwards and turn three quarter turns clockwise then a quarter turn anticlockwise describe my finishing position.		What's the same, what's different? Pick up and look at these 3-D shapes.	

Do they all have straight edges and flat faces?
What is the same and what is different about these shapes?

Measurement

Top tips Put these measurements in order starting with the smallest. 75 grammes 85 grammes 100 grammes Explain your thinking	Position the symbols Place the correct symbol between the measurements > or < $36 \mathrm{~cm} \square 63 \mathrm{~cm}$ $130 \mathrm{ml} \square 103 \mathrm{ml}$ Explain your thinking	Undoing The film finishes two hours after it starts. It finishes at 4.30. What time did it start? Draw the clock at the start and the finish of the film.	Explain thinking The time is $3: 15 \mathrm{pm}$. Kate says that in two hours she will be at her football game which starts at 4:15. Is Kate right? Explain why.
Application (Practical) Draw two lines whose lengths differ by 4 cm .	Possibilities How many different ways can you make 63 p using only 20 p, 10 p and 1 p coins?	Working backwards Draw hands on the clock faces to show when break started and when it finished 15 minutes later at 10:35.	The answer is 3 hours What is the question?
What do you notice? What do you notice? 1 hour $=60$ minutes $\frac{1}{2}$ hour $=30$ minutes $\frac{1}{4}$ hour $=15$ minutes			

Statistics

True or false? (Looking at a simple pictogram) "More people travel to work in a car than on a bicycle".

Is this true or false?

Create a questions Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.

Convince me.

Make up you own 'true/false' statement about the pictogram

What's the same, what's different?

Pupils identify similarities and differences between different representations and explain them to each other

KS2

Spot the mistake / Which is correct?	True or false	What comes next?	Do, then explain	Make up an example, create a question, calculation connections
$950,975,1000,1250$ What is wrong with this sequence of numbers?	38 is a multiple of 8?	$\begin{aligned} & 936-10=926 \\ & 926-10=916 \\ & 916-10=906 \end{aligned}$	$37,13,73,33,3$ If you wrote these numbers in order, starting with the smallest, which would be third? Explain how you ordered the numbers.	Create numbers where the ones digit is one less than the tens digit. What is the largest / smallest number?
Possible answer A number rounded to the nearest ten is 540 . What is the smallest possible number it could be?	What do you notice? Round 343997 to the nearest 1000. Round it to the nearest 10000. What do you notice?	Continue the pattern $\begin{aligned} & \frac{11}{100}+\frac{89}{100}=1 \\ & \frac{12}{100}+\frac{88}{100}=1 \\ & \frac{13}{100}+\frac{87}{100}=1 \end{aligned}$ Continue the pattern	Missing numbers, symbols, information Put the correct symbol in < or > in each box $3.03 \square 3.3$	Working backwards / use the inverse / undoing / unpicking A film lasting 200 minutes finished at 17:45. At what time did it start?
Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 213323-70 \\ & 512 \div 4 \\ & 32 \times 12 \end{aligned}$	What else do you know / use a fact 88% of a sum of money $=£ 242$. Make up some other statements	Fact families Put 19, 15 and 4 in the boxes to make the number sentences correct $\begin{aligned} & \square=\square-\square \\ & \square=\square+\square \end{aligned}$	Convince me / prove it / generalising / explaining thinking Which capital letters have perpendicular and/or parallel lines? Convince me.	Another and another Write a decimal number (to two dp) which lined between $1 / 2$ and $3 / 4$ And another...and another...
Always, sometimes, never Is it always, sometimes or never true that when you fold a square in half you get a rectangle?	Making links I have 30 p in my pocket in 5 p coins. How many coins do I have?	Ordering Put these numbers in the correct order starting with the smallest	What's the same? What's different? What is the same and different about these three 2 D shapes?	Odd one out Which is the odd one out in this trio? $\frac{1}{2} \frac{2}{4} \frac{1}{4}$

		$\frac{7}{10} 0.73 \frac{7}{100} 0.07371 \%$	$\square \bigcirc \triangle$	
Testing conditions A square has sides of a whole number of centimetres. Which of the following measurements could represent its perimeter? $8 \mathrm{~cm} \mathrm{18cm} \mathrm{24cm} \mathrm{25cm}$	Make an estimate / size of an answer Circle the number that is the best estimate to $932.6-931.05$ $\begin{array}{llll} 1.3 & 1.5 & 1.7 & 1.9 \end{array}$	Complete the pattern $\begin{aligned} & \frac{1}{10}=\frac{10}{100}=0.1 \\ & \frac{2}{10}=\frac{20}{100}=? \\ & \frac{3}{10}=?=0.3 \\ & ?=\frac{40}{100}=? \end{aligned}$	Can you find? Can you find the smallest number that can be added to or subtracted from 87.6 to make it exactly divisible by 8? By 17? By 18?	The answer is... The answer is 72%, what is the question?
Other possibilities One face of 3D shape looks like this: What could the shape be? Are there any other possibilities?	Visualising In your head picture a rectangle that is twice as long as it is wide. What could its measurements be?	Application Draw two lines whose lengths differ by 4 cm	Write more statements One battery weights the same as 60 pap same as 20 paperclips. Write down som	erclips. One pencil sharpener weights the things you know.

Year 3

Number and place value

Spot the mistake:

50,100,115,200
What is wrong with this sequence of numbers?

True or False?

38 is a multiple of 8 ?

What comes next?

$936-10=926$
$926-10=916$
$916-10=906$

Make up an example Create numbers where the digit sum is three.
Eg 120, 300, 210
What is the largest/smallest number?

Do, then explain

$\begin{array}{lllll}835 & 535 & 538 & 388 & 508\end{array}$
If you wrote these numbers in order starting with the smallest, which number would be third? Explain how you ordered the numbers.

Do, then explain

Show the value of the digit 3 in these numbers?
341503
937

Explain how you know.
\square

Addition, subtraction, multiplication and division

True or false? Are these number sentences true or false? $597+7=614$ $804-70=744$ $768+140=908$ Give your reasons.	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 323+10= \\ & 393+10= \\ & 454-100= \\ & 954-120= \end{aligned}$ Explain why you think the hard questions are hard?	Convince me \square \square $+$ \square \square + \square \square The total is 201 Each missing digit is either a 9 or a 1 . Write in the missing digits. Is there only one way of doing this or lots of ways? Convince me	Making an estimate Which of these number sentences have the answer that is between 50 and 60 $\begin{aligned} & 174-119 \\ & 333-276 \\ & 932-871 \end{aligned}$
Always, sometimes, never Is it always, sometimes or never true that if you subtract a multiple of 10 from any number the ones digit of that number stays the same. Is it always, sometimes or never true that when you add two numbers together you will get an even number	Missing numbers $24=\square \quad \times \square$ Which pairs of numbers could be written in the boxes? Making links Cards come in packs of 4. How many packs do I need to buy to get 32 cards?	Making links $4 \times 6=24$ How does this fact help you to solve these calculations? $\begin{aligned} & 40 \times 6= \\ & 20 \times 6= \\ & 24 \times 6= \end{aligned}$	Use a fact $20 \times 3=60$ Use this fact to work out $\begin{array}{ll} 21 \times 3= & 22 \times 3= \\ 23 \times 3= & 24 \times 3= \end{array}$
Use the inverse Use the inverse to check if the following calculations are correct $23 \times 4=82$	Prove It What goes in the missing box?	How close can you get?	True or false? All the numbers in the two times table are even.

x	$?$	$?$
4	80	12

Prove it.

Size of an answer

Will the answer to the following calculations be greater or less than 80
$23 \times 3=32 \times 3=$
$42 \times 3=$
$36 \times 2=$

Fractions

Spot the mistake six tenths, seven tenths, eight tenths, nine tenths, eleven tenths ... and correct it.	What comes next? $\begin{array}{r} \frac{6}{10}, \frac{7}{10}, \frac{8}{10}, \ldots ., \ldots \\ \frac{12}{10}, \frac{11}{10}, \ldots . ., \ldots . ., \ldots . . \end{array}$	What do you notice? $\begin{aligned} & \frac{1}{10} \text { of } 10=1 \\ & \frac{2}{10} \text { of } 10=2 \\ & \frac{3}{10} \text { of } 10=3 \end{aligned}$ Continue the pattern. What do you notice? What about $1 / 10$ of 20 ? Use this to work out $2 / 10$ of 20 , etc.	True or false? $\begin{aligned} & \frac{2}{10} \text { of } 20 \mathrm{~cm}=2 \mathrm{~cm} \\ & \frac{4}{10} \text { of } 40 \mathrm{~cm}=4 \mathrm{~cm} \\ & \frac{3}{5} \text { of } 20 \mathrm{~cm}=12 \mathrm{~cm} \end{aligned}$
Odd one out. Which is the odd one out in each of these trios $\begin{array}{lll} \frac{1}{2} & \frac{3}{6} & \frac{5}{8} \end{array}$	What do you notice? Find $\frac{2}{5}$ of 10 Find $\frac{4}{10}$ of 10 . What do you notice?	Ordering Put these fractions in the correct order, starting with the smallest.	What do you notice? $\frac{1}{10}+\frac{9}{10}=1$

Geometry

What's the same, what's different?

What is the same and different about
these three2-D shapes?

Other possibilities

Can you find shapes that can go with the set with this label?
"Have straight sides that are different lengths."

Visualising

I am thinking of a 3-dimensional shape which has faces that are triangles and squares. What could my shape be?

Convince me

Which capital letters have perpendicular and / or parallel lines?

Convince me.

Other possibilities

One face of a 3-D shape looks like this.

What could it be?

Are there any other possibilities?

Working backwards

If I make the two opposite sides of a square 5 cm longer the new lengths of those sides are 27 cm .

What was the size of my original square?
What is the name and size of my new shape?

Always, sometimes, never

Is it always, sometimes or never that all sides of a hexagon are the same length.

Measurement

Top Tips Put these measurements in order starting with the largest. Half a litre Quarter of a litre 300 ml Explain your thinking	Position the symbols Place the correct symbol between the measurements > or < $306 \mathrm{~cm} \square$ Half a metre $930 \mathrm{ml} \quad \square \quad 1$ litre Explain your thinking	Undoing A programme lasting 45 minutes finishes at 5.20. At what time did it start? Draw the clock at the start and finish time.	Explain thinking Salha says that 100 minutes is the same as 1 hour. Is Salha right? Explain why.
Write more statements (You may choose to consider this practically) If there are 630 ml of water in a jug. How much water do you need to add to end up with a litre of water? What if there was 450 ml to start with? Make up some more questions like this	Testing conditions A square has sides of a whole number of centimetres. Which of the following measurements could represent its perimeter? 8 cm 18 cm 24 cm 25 cm	Possibilities I bought a book which cost between $£ 9$ and $£ 10$ and I paid with a ten pound note. My change was between 50 p and $£ 1$ and was all in silver coins. What price could I have paid?	Working backwards Tom's bus journeytakes half an hour. He arrives at his destination at 9:25. At what time did his bus leave? १:05 8:55 8:45
The answer is 25 minutes What is the question?		What do you notice? 1 minute $=60$ seconds 2 minutes $=120$ seconds Continue the pattern Write down some more time facts like th	

Statistics

True or false? (Looking at a bar chart) "Twice as many people like strawberry than lime".

Is this true or false?

What's the same, what's different?

Pupils identify similarities and differences between different representations and explain them to each other

Create a questions Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objective

Convince me.

Make up your own 'true/false' statement about the bar chart.

Algebra

Connected Calculations

Put the numbers $3,12,36$ in the boxes to make the number sentences correct.
$\square=\square \times \square$
$\square=\square \div \square$

Year 4

Number and place value

Spot the mistake: $950,975,1000,1250$ What is wrong with this sequence of numbers?	True or False? 324 is a multiple of 9?	What comes next? $\begin{aligned} & 6706+1000=7706 \\ & 7706+1000=8706 \\ & 8706+1000=9706 \end{aligned}$	Do, then explain 50355053535055305503 If you wrote these numbers in order starting with the largest, which number would be third? Explain how you ordered the numbers.
Do, then explain Show the value of the digit 4 in these numbers? $3041 \quad 4321 \quad 5497$ Explain how you know.	Make up an example Create four digit numbers where the digit sum is four and the tens digit is one. Eg 1210, 2110, 3010 What is the largest/smallest number?	Possible answers A number rounded to the nearest ten is 540. What is the smallest possible number it could be?	What do you notice? Round 296 to the nearest 10. Round it to the nearest 100. What do you notice? Can you suggest other numbers like this?

Addition, subtraction, multiplication and division

True or false?	Convince me		
Are these number sentences true or	$63 \div 9=7$		Making an estimate
false? $6.7+0.4=6.11$	Use this fact to work out		
$8.1-0.9=7.2$	$126 \div 9=$		
Give your reasons.	What is the largest possible number that will go in the rectangular box? What is the smallest? Convince me	Which of these number sentences have the answer that is between 550 and 600	

			$3330-2779$

100	100		100
0.1		0.3	

Fractions

Spot the mistake sixty tenths, seventy tenths, eighty tenths, ninety tenths, twenty tenths ... and correct it.	What comes next? $\begin{array}{r} \frac{83}{100}, \frac{82}{100}, \frac{81}{100}, \ldots . ., \ldots ., \ldots . \\ \frac{31}{100}, \frac{41}{100}, \frac{51}{100}, \end{array}$	What do you notice? $\begin{aligned} & \frac{1}{10} \text { of } 100=10 \\ & \frac{1}{100} \text { of } 100=1 \\ & \frac{2}{10} \text { of } 100=20 \\ & \frac{2}{100} \text { of } 100=2 \end{aligned}$ How can you use this to work out $\frac{6}{10}$ of 200? $\frac{6}{100}$ of 200 ?	True or false? $\begin{aligned} & \frac{1}{20} \text { of a metre }=20 \mathrm{~cm} \\ & \frac{4}{100} \text { of } 2 \text { metres }=40 \mathrm{~cm} \end{aligned}$
Missing symbol Put the correct symbol < or > in each box $3.03 \square$ 0.37 \square	What needs to be added to 3.23 to give 3.53? What needs to be added to 3.16 to give 3.2?	Do, then explain Circle each decimal which when rounded to the nearest whole number is 5 . $\begin{array}{llll}5.3 & 5.7 & 5.2 & 5.8\end{array}$ Explain your reasoning	Top tips Explain how to round numbers to one decimal place?
Odd one out. Which is the odd one out in each of these trios $\begin{array}{llll} \frac{3}{4} & \frac{9}{12} & \frac{4}{6} & \\ \frac{9}{12} & \frac{10}{15} & \frac{2}{3} \end{array}$ Why?	What do you notice? Find $\frac{4}{6}$ of 24 Find $\frac{2}{3}$ of 24 What do you notice? Can you write any other similar statements?	Ordering Put these numbers in the correct order, starting with the smallest. $\begin{array}{lll} \frac{1}{4} & 0.75 & \frac{5}{10} \end{array}$	What do you notice? $\frac{5}{5}-\frac{1}{5}=\frac{4}{5}$ $\frac{4}{5}-\frac{1}{5}=\frac{3}{5}$

	Explain your thinking	
Give an example Give an example of a fraction that is more than a half but less than a whole. Now another example that no one else will think of. Explain how you know the fraction is more than a half but less than a whole. (draw an image) The answer is $3 / 5$, what is the question?	Undoing I divide a number by 100 and the answer is 0.3 . What number did I start with? Another and another Write down a number with one decimal place which when multiplied by 10 gives an answer between 120 and 130 and another, ... and another, ...	Continue the pattern Can you make up a similar pattern for addition? What do you notice? $\frac{11}{100}+\frac{89}{100}=1$ $\frac{12}{100}+\frac{88}{100}=1$ $\frac{13}{100}+\frac{87}{100}=1$ Continue the pattern for the next five number sentences

Geometry

What's the same, what's different?

What is the same and what is different about the diagonals of these 2-D shapes?

Other possibilities

Can you draw a non-right angled triangle with a line of symmetry?

Are there other possibilities.

Always, sometimes, never

Is it always, sometimes or never true that the two diagonals of a rectangle meet at right angles.

Other possibilities

Can you show or draw a polygon that
fits both of these criteria?
What do you look for?
"Has exactly two equal sides."
"Has exactly two parallel sides."

Convince me

Ayub says that he can draw a right angled triangle which has another angle which is obtuse.

Is he right?
Explain why.

Working backwards

Here are the co-ordinates of corners of a rectangle which has width of 5
$(7,3)$ and $(27,3)$
What are the other two co-ordinates?

Measurement

Top Tips Put these amounts in order starting with the largest. Half of three litres Quarter of two litres 300 ml Explain your thinking	Position the symbols Place the correct symbols between the measurements > or < £23.61 2326p 2623p Explain your thinking	Undoing Imran's swimming lesson lasts 50 mins and it takes 15 mins to change and get ready for the lesson. What time does Imran need to arrive if his lesson finishes at 6.15 pm ?	Explain thinking The time is $10: 35 \mathrm{am}$. Jack says that the time is closer to 11:00am than to 10:00am. Is Jack right? Explain why
Write more statements One battery weighs the same as 60 paperclips; One pencil sharpener weighs the same as 20 paperclips. Write down some more things you know. How many pencil sharpeners weigh the same as a battery?	Testing conditions If the width of a rectangle is 3 metres less than the length and the perimeter is between 20 and 30 metres, what could the dimensions of the rectangle lobe? Convince me.	Possibilities Adult tickets cost $£ 8$ and Children's tickets cost $£ 4$. How many adult and children's tickets could I buy for $£ 100$ exactly? Can you find more than one way of doing this?	Always, sometimes, never If you double the area of a rectangle, you double the perimeter.
Working backwards Put these times of the day in order, starting with the earliest time. A: Quarter to four in the afternoon		The answer is	What do you notice?

C: six minutes to nine in the evening
D: 14:36

225 metres
What is the question?

What do you notice?
$1: 00 \mathrm{pm}=13: 00$
$2: 00 \mathrm{pm}=14: 00$

Continue the pattern

Statistics

True or false? (Looking at a graph showing how the class sunflower is growing over time) "Our sunflower grew the fastest in July".

Is this true or false?

Convince me.

Make up your own 'true/false' statement about the graph.

What's the same, what's different?

Pupils identify similarities and differences between different representations and explain them to each other

Create a question

Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.

Algebra

Connected Calculations

Put the numbers 7.2, 8, 0.9 in the boxes to make the number sentences correct.

Undoing

If the longer length of a rectangle is 13 cm and the perimeter is 36 cm , what is the length of the shorter side?

Year 5

Number and place value

Addition, subtraction, multiplication and division

True or false?	Hard and easy questions	Convince me	Making an estimate
Are these number sentences true or false?6.17+0.4 $=6.57$	Which questions are easy / hard? $\begin{aligned} & 213,323-70= \\ & 512,893+300= \end{aligned}$	$\square+1,475=6 \square 24$	Which of these number sentences have the answer that is between 0.5
$8.12-0.9=8.3$	$\begin{aligned} & 819,354-500= \\ & 319,954+100= \end{aligned}$	What numbers go in the boxes? What different answers are there?	and 0.6
Give your reasons.	Explain why you think the hard questions are hard?	Convince me	$\begin{aligned} & 11.74-11.18 \\ & 33.3-32.71 \end{aligned}$

Always, sometimes, never Is it always, sometimes or never four even numbers is divisible by	We that the sum of Missing 6×0.9 6×0.0 Which the b	g numbers $=0.03$ Making links Apples weigh about 170 g each. How many apples would you expect to get in a 2 kg bag? $4=0.008 \square$ numbers could be written in	Making links $7 \times 8=56$ How can you use this fact to solve these calculations? $\begin{aligned} & 0.7 \times 0.8= \\ & 5.6 \div 8= \end{aligned}$
Use a fact $3 \times 75=225$ Use this fact to work out $\begin{aligned} & 450 \div 6= \\ & 225 \div 0.6= \end{aligned}$ To multiply by 25 you multiply by 100 and then divide by 4. Use this strategy to solve $\begin{array}{ll} 48 \times 25 & 78 \times 25 \\ 4.6 \times 25 & \end{array}$	Prove It What goes in the missing box? $\begin{aligned} & 12 \square \begin{array}{l} 2 \div 6=212 \\ 14 \square \div 7=212 \end{array} \quad \begin{array}{l} 4 \div \end{array}{ }^{2} \square \end{aligned}$ $22 \square 3 \div 7=321 \mathrm{r} 6$ $323 \times \square \quad 1=13243$	Always, sometimes, never? Is it always, sometimes or never true that multiplying a number always makes it bigger? Is it always, sometimes or never true that prime numbers are odd? Is it always, sometimes or never true that when you multiply a whole number by 9 , the sum of its digits is also a multiple of 9 ? Is it always, sometimes or never true that a square number has an even number of factors?	Use the inverse Use the inverse to check if the following calculations are correct: $\begin{aligned} & 4321 \times 12=51852 \\ & 507 \div 9=4563 \end{aligned}$ Size of an answer The product of a two digit and three digit number is approximately 6500 . What could the numbers be?

Fractions

Spot the mistake	Missing symbol Put the correct symbol < or $>$ in each box	What do you notice? $0.088,0.089,1.0$	True or false? 0.1 of a kilometre is 1 m. 0.2 of 2 kilometres is 2 m.

Another and another Write a fraction with a denominator of one hundred which
has a value of more than 0.75 ?
... and another, ... and another,

Write down a number with two decimal places which when multiplied by 100 gives an answer between 33 and 38 .
\ldots and another, ... and another, ...

Give an example of a fraction that is more than three quarters.
Now another example that no one else will think of. Explain how you know the fraction is more than three quarters.

What do you notice?

$\frac{3}{4}$ and $\frac{1}{4}=\frac{4}{4}=1$
$\frac{4}{4}$ and $\frac{1}{4}=\frac{5}{4}=1 \frac{1}{4}$
$\frac{5}{4}$ and $\frac{1}{4}=\frac{6}{4}=1 \frac{1}{2}$
Continue the pattern up to the total of 2 .

Can you make up a similar pattern for subtraction?

Imran put these fractions in order starting with the smallest. Are they in the correct order?
Two fifths, three tenths, four twentieths
How do you know?
Undoing
I divide a number by 100 and the answer is 0.33 What number did I start with?

Continue the pattern

$\frac{1}{4} \times 3=$
$\frac{1}{4} \times 4=$
$\frac{1}{4} \times 5=$
Continue the pattern for five more number sentences. How many steps will it take to get to 3 ?
$\frac{5}{3}$ of $24=40$
Write a similar sentence where the answer is 56 .

What's the question

The answer is $1 \frac{2}{5}$, what is the question

The answer is $2 \frac{1}{4}$, what is the question

Geometry

What's the same, what's different?

What is the same and what is different about the net of a cube and the net of a cuboid?

Other possibilities

A rectangular field has a perimeter between 14 and 20 metres.
What could its dimensions be?

Visualising

I look at a large cube which is made up of smaller cubes.

If the larger cube is made up of between 50 and 200 smaller cubes what might it look like?

Convince me

What is the angle between the hands of a clock at four o clock?

At what other times is the angle between the hands the same?

Convince me

Other possibilities

Here is one angle of an isosceles triangle. You will need to measure the angle accurately.
What could the other angles of the triangle be?
Are there any other possibilities?

Always, sometimes, never

Is it always, sometimes or never true that the number of lines of reflective symmetry in a regular polygon is equal to the number of its sides n.

Measurement

Statistics

True or false? (Looking at a train timetable) "If I want to get to Exeter by 4 o'clock this afternoon, I will need to get to Taunton station before midday".

Is this true or false?

Convince me.

Make up your own 'true/false' statement about a journey using the timetable.

Create a questions Pupils ask (and answer)

questions about different statistical representations using key vocabulary relevant to the objectives.

What's the same, what's different?

Pupils identify similarities and differences between different representations and explain them to each other

Algebra

Connected Calculations

The number sentence below represents the angles in degrees of an isosceles triangle.
$A+B+C=180$ degrees
A and B are equal and are multiples of 5 .
Give an example of what the 3 angles could be.
Write down 3 more examples

Undoing

The perimeter of a rectangular garden is between 40 and 50 metres.
What could the dimensions of the garden be?

Year 6

Number and place value

Spot the mistake: $-80,-40,10,50$	True or False?	True or False?	Do, then explain

What is wrong with this sequence of numbers?	When I count backwards in 50s from 10 I will say -200	The temperature is -3 . It gets 2 degrees warmer. The new temperature is -5 ?	Show the value of the digit 6 in these numbers? $6,787,555 \quad 95,467,754$ Explain how you know.
Do, then explain Find out the populations in five countries. Order the populations starting with the largest. Explain how you ordered the countries and their populations.	Make up an example Create seven digit numbers where the digit sum is six and the tens of thousands digit is two. Eg 4,020,000 What is the largest/smallest number?	Possible answers Two numbers each with two decimal places round to 23.1 to one decimal place. The total of the numbers is 46.2 . What could the numbers be?	What do you notice? Give an example of a six digit number which rounds to the same number when rounded to the nearest 10,000 and 100,000

Addition, subtraction, multiplication and division

True or false? Are these number sentences true or false? $\begin{aligned} & 6.32+\square=8 \\ & \square=1.68 \end{aligned}$ Give your reasons.	Hard and easy questions Which questions are easy / hard? $\begin{aligned} & 213,323-70= \\ & 512,893+37= \\ & 8,193.54-5.9= \end{aligned}$ Explain why you think the hard	Missing symbols Write the missing signs (+ - $\mathrm{x} \div$) in this number sentence: $6 \bigcirc 12.3=61.9 \bigcirc 11.9$ What else do you know?	Convince me Three four-digit numbers total 12,435 . What could they be? Convince me
Making an estimate Circle the number that is the best estimate to $932.6-931.05$ $\begin{array}{llll} 1.3 & 1.5 & 1.7 & 1.9 \end{array}$	questions are hard?	If you know this: $86.7+13.3=100$ what other facts do you know?	Can you find? Can you find the smallest number that can be added to or subtracted from 87.6 to make it exactly divisible by 8/7/18?
Making links	Always, sometimes, never	Missing numbers	Use a fact

$0.7 \times 8=5.6$

How can you use this fact to solve these calculations?
$0.7 \times 0.08=$
$0.56 \div 8=$

Use the inverse

Use the inverse to check if the following calculations are correct
$2,346 \times 46=332,796$
$27.74 \div 19=1.46$

Size of an answer

The product of a single digit number and a number with two decimal places is 21.34
What could the numbers be?
$2.4 \div 0.3=$ \square $\times 1.25$

Which number could be written in the box?
$12 \times 1.1=13.2$
Use this fact to work out
$15.4 \div 1.1=$
$27.5 \div 1.1=$

Always, sometimes, never?

Is it always, sometimes or never true that dividing a whole number by a half makes the answer twice as big.
Is it always, sometimes or never true that when you square an even number, the result is divisible by 4
Is it always, sometimes or never true that multiples of 7 are 1 more or 1 less than prime numbers.

Fractions

Spot the mistake Identify and explain mistakes when counting in more complex fractional steps	What do you notice? One thousandth of my money is 31 p. How much do I have?	True or false? 25% of 23 km is longer than 0.2 of 20 km . Convince me.	What needs to be added to 6.543 to give 7? What needs to be added to 3.582 to give 5?
Circle the two decimals which are closest in value to each other. 0.90 .090 .990 .10 .01	Do, then explain Write the answer of each calculation rounded to the nearest whole number 75.7×59	What's the same, what's different? when you round numbers to one decimal place and two decimal places?	Odd one out. Which is the odd one out in each of these collections of 4 fractions $\begin{array}{\|llll} \frac{3}{4} & \frac{9}{12} & \frac{26}{36} & \frac{18}{24} \\ \hline \end{array}$

Undoing

I multiply a number with three decimal places by a multiple of 10 . The answer is approximately 3.21
What was my number and what did I multiply buy?

When I divide a number by 1,000 the resulting number has the digit 6 in the ones and tenths and the other digits are 3 and 2 in the tens and hundreds columns. What could my number have been?

Geometry

What's the same, what's different? What is the same and what is different about the nets of a triangular prism and a square based pyramid?	Visualising Jess has 24 cubes which she builds to make a cuboid. Write the dimensions of cuboids that she could make. List all the possibilities.	Other possibilities If one angle of an isosceles triangle is 36 degrees. What could the triangle look like - draw it. Are there other possibilities. Draw a net for a cuboid that has a volume of $24 \mathrm{~cm}^{3}$.	Always, sometimes, never Is it always, sometimes or never true that, in a polyhedron, the number of vertices plus the number of faces equals the number of edges.
Other possibilities Not to scale The angle at the top of this isosceles triangle is 110 degrees. What are the other angles in the triangle?	Convince me One angle at the point where the diagonals of a rectangle meet is 36 degrees.	Working backwards Two triangles have the following coordinates: Triangle A: $(3,5) \quad(7,5) \quad(4,7)$ Triangle B: $(3,1)(7,1) \quad(4,3)$	

| | What could the other angles be?
 Convince me | Describe the translation of triangle A to
 B and then from B to A. |
| :--- | :--- | :--- | :--- |

Measurement

Top Tips Put these amounts in order starting with the largest. $\begin{aligned} & 100 \mathrm{~cm}^{3} \\ & 1000000 \mathrm{~mm}^{3} \end{aligned}$ $1 \mathrm{~m}^{3}$ Explain your thinking	Undoing A film lasting 200 minutes finished at 17:45. At what time did it start?	Other possibilities (links with geometry, shape and space) A cuboid has a volume between 200 and 250 cm cubed. Each edge is at least 4 cm long. List four possibilities for the dimensions of the cuboid..	Write more statements Chen, Megan and Sam have parcels. Megan's parcel weighs 1.2 kg and Chen's parcel is 1500 g and Sam's parcel is half the weight of Megan's parcel. Write down some other statements about the parcels. How much heavier is Megan's parcel than Chen's parcel?
Testing conditions A square has the perimeter of 12 cm . When 4 squares are put together, the perimeter of the new shape can be calculated. For example: What arrangements will give the maximum perimeter?	Always, sometimes, never The area of a triangle is half the area of the rectangle that encloses it:	The answer is 24 metres cubed What is the question?	What do you notice? $8 \mathrm{~km}=5$ miles $\begin{aligned} & 16 \mathrm{~km}=\square \text { miles } \\ & 4 \mathrm{~km}=\square \text { miles } \end{aligned}$ Fill in the missing number of miles. Write down some more facts connecting kilometres and miles.

Statistics

True or false?	Is this true or false?	What's the same, what's different?

(Looking at a pie chart) "More than twice the number of people say their favourite type of T.V. programme is soaps than any other"

Create a questions

Make up a set of five numbers with a mean of 2.7

Convince me.

Make up your own 'true/false' statement about the pie chart.

Pupils identify similarities and differences between different representations and explain them to each other

Missing information

The mean score in six test papers in a spelling test of 20 questions is 15 . Five of the scores were $\begin{array}{lllll}13 & 12 & 17 & 18\end{array}$ 16 What was the missing score?

Algebra

Connected Calculations

p and q each stand for whole numbers.
$p+q=1000$ and p is 150 greater than q.
Work out the values of p and q.

Generalising

Write a formula for the $10^{\text {th }}, 100^{\text {th }}$ and nth terms of the sequences below.
$4,8,12,16 \ldots \ldots$.
$0.4,0.8,1.2,1.6, \ldots . .$.

Undoing

The diagram below represents two rectangular fields that are next to each other.

Field A is twice as long as field B but their widths are the same and are 7.6 metres. If the perimeter of the small field is 23 m what is the perimeter of the entire shape containing both fields?

If y stands for a number complete the table below

y	$3 y$	$3 y+1$
25		
		28

What is the largest value of y if the greatest number in the table was 163 ?

Ratio and proportion

What else do you know?

In a flower bed a gardener plants 3 red bulbs for
every 4 white bulbs. How many red and white bulbs
might he plant?
If she has 100 white bulbs, how many red bulbs does she need to buy?
If she has 75 red bulbs, how many white bulbs does she need to buy?
If she wants to plant 140 bulbs altogether, how many
of each colour should she buy?

Undoing

I think of a number and then reduce it by 15%. The number I end up with is 306 . What was my original number?

Do, then explain

Purple paint is made from read and blue paint in the ratio of 3:5.
To make 40 litres of purple paint how much would I need of each colour? Explain your thinking

Working backwards

In a sale where everything is reduced by 15\% I paid the following prices for three items.

$£ 255, £ 850, £ 4.25$

What was the original selling price?

What else do you know?

88% of a sum of money $=£ 242$. Make up some other statements.
Write real life problems for your number sentences.

Unpicking

A recipe needs to include three times as much apple than peach. The total weight of apples and peaches in a recipe is 700 grammes. How much apple do I need?

Other possibilities

A 50 seater coach travels to the match. Most of the seats are taken.
Junior tickets cost $£ 13$ and Adult tickets cost $£ 23$.
The only people on the coach are Juniors and Adults.
The total amount paid for tickets is approximately $£ 900$
How many people on the coach were adults and how many were juniors?

